Write nuclear reaction equations for
$(i)$ $\alpha$ -decay of $^{226}_{88} Ra$
$(ii)$ $\alpha$ -decay of $_{94}^{242} Pu$
$(iii)$ $\beta$ -decay of $_{15}^{32} P$
$(iv)$ $\beta$ -decay of $^{210}_{83}Bi$
$(v)$ $\beta^{+}$ -decay of $_{6}^{11} C$
$(vi)$ $\beta^{+}$ -decay of $_{43}^{97} Tc$
$(vii)$ Electron capture of $^{120}_{54} Xe$
$\alpha$ is a nucleus of helium $\left(_{2} H e^{4}\right)$ and $\beta$ is an electron $(e^{-}$ for $\beta^{-}$ and $e^{+}$ for $\beta^{+}$) In every $\alpha$ decay, there is a loss of $2$ protons and $2$ neutrons. In every $\beta^{+}$ -decay, there is a loss of $1$ proton and a neutrino is emitted from the nucleus. In every $\beta^{-}$ -decay, there is a gain of $1$ proton and an antineutrino is emitted from the nucleus. For the given cases, the various nuclear reactions can be written as:
$(i)\;_{88} R a^{226} \rightarrow_{86} R n^{222}+_{2} H e^{4}$
$(i i) \;^{242}_{94} Pu \rightarrow_{92}^{238} U+_{2}^{4} H e$
$(i i i)\;_{15}^{32} P \rightarrow_{16}^{32} S+e^{-}+\bar{v}$
$(i v)\;_{83}^{210} B \rightarrow_{84}^{210} P O+e^{-}+\bar{v}$
$(v)\;_{6}^{11} C \rightarrow_{5}^{11} B+e^{+}+v$
$(v i)\;_{43}^{97} T c \rightarrow_{42}^{97} M O+e^{+}+v$
$(v i i)\;_{54}^{120} X e+e^{+} \rightarrow_{53}^{120} I+v$
Which of the following is in the increasing order for penetrating power
Originally the radioactive beta decay was thought as a decay of a nucleus with the emission of electrons only (Case $I$) . However, in addition to the electron, another (nearly) massless and electrically neutral particle is also emitted (Case $II$). Based on the figure below, which of the following is correct?
A neutron strikes a ${ }_{92} U ^{235}$ nucleus and as a result ${ }_{38} Kr ^{93}$ and ${ }_{56} Ba ^{140}$ are produced with
Match List $I$ of the nuclear processes with List $II$ containing parent nucleus and one of the end products of each process and then select the correct answer using the codes given below the lists :
List $I$ | List $II$ |
$P.$ $\quad$ Alpha decay | $1.$ $\quad{ }_8^{15} 0 \rightarrow{ }_7^{15} N +\ldots \ldots$. |
$Q.$ $\quad$ $\beta^{+}$decay | $2.$ $\quad{ }_{92}^{238} U \rightarrow{ }_{90}^{234} Th +\ldots \ldots$. |
$R.$ $\quad$Fission | $3.$ $\quad{ }_{83}^{185} Bi \rightarrow{ }_{82}^{184} Pb +\ldots \ldots$. |
$S.$ $\quad$Proton emission | $4.$ $\quad{ }_{94}^{239} Pu \rightarrow{ }_{57}^{140} La +\ldots \ldots$. |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
The radioactive decay of uranium into thorium is expressed by the equation $_{92}^{238}U \to _{90}^{234}Th + X,$ where $'X'$ is