दिए गए आरेख में $M$ द्रव्यमान का एक पिण्ड एक क्षैतिज कमानी से बंधा हैं, जिसका दूसरा सिरा किसी दढ़ सपोर्ट से जुड़ा है। कमानी का कमानी स्थिरांक $k$ है। यह पिण्ड किसी घर्षणहीन पष्ठ पर आवर्तकाल $T$ और आयाम $A$ के साथ दोलन करता है। जब यह पिण्ड साम्यावस्था की स्थिति पर होता है (आरेख देखिए) तब कोई अन्य पिण्ड, जिसका द्रव्यमान $m$ है, इस पिण्ड के ऊपर धीरे से जोड़ दिया जाता है। अब दोलन का नया आयाम होगा।
$A \sqrt{\frac{M-m}{M}}$
$A \sqrt{\frac{M}{M+m}}$
$A \sqrt{\frac{M+m}{M}}$
$A \sqrt{\frac{M}{M-m}}$
एक द्रव्यमान $m$ को ${K_1}$ व ${K_2}$ बल नियतांक वाली दो स्प्रिंगों से अलग-अलग लटकाने पर इनकी सरल आवर्त गतियों के आवर्तकाल क्रमश: ${t_1}$ व ${t_2}$ हैं। यदि उसी द्रव्यमान $m$ को चित्रानुसार दोनों स्प्रिंगों से लटकाया जाये तो इसकी सरल आवर्त गति के आवर्तकाल $t$ के लिए सही सम्बन्ध है
जब $m$ द्रव्यमान को किसी स्प्रिंग से जोड़ा जाता है तो इसकी लम्बाई में $0.2$ मीटर की वृद्धि हो जाती है। $m$ द्रव्यमान को थोड़ा सा अतिरिक्त खींच कर छोड़ देने पर इसका आवर्तकाल होगा
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक $200$ न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये? (मान लो $g =10$ मी/से $^{2})$
एक स्प्रिंग तुला की स्केल $0$ से $10\, kg$ तक मापन करती है तथा इसकी लम्बाई $0.25\, m$ है। स्प्रिंग तुला से लटकी हुई एक वस्तु $\frac{\pi }{{10}}\sec$ के आवर्तकाल से ऊध्र्वाधर दोलन करती है। लटकी हुई वस्तु का द्रव्यमान ..... $kg$ होगा, (स्प्रिंग का द्रव्यमान नगण्य है)
एक हल्की स्प्रिंग् से $M$ द्रव्यमान लटकाया जाता है। $m$ द्रव्यमान और लटकाने पर इसमें दूरी $'x'$ की अतिरिक्त वृद्धि हो जाती है। अब संयुक्त द्रव्यमान का इस स्प्रिंग् पर दोलनकाल होगा