एक द्रव्यमान $m$ को ${K_1}$ व ${K_2}$ बल नियतांक वाली दो स्प्रिंगों से अलग-अलग लटकाने पर इनकी सरल आवर्त गतियों के आवर्तकाल क्रमश: ${t_1}$ व ${t_2}$ हैं। यदि उसी द्रव्यमान $m$ को चित्रानुसार दोनों स्प्रिंगों से लटकाया जाये तो इसकी सरल आवर्त गति के आवर्तकाल $t$ के लिए सही सम्बन्ध है
$t = {t_1} + {t_2}$
$t = \frac{{{t_1}.{t_2}}}{{{t_1} + {t_2}}}$
${t^2} = {t_1}^2 + {t_2}^2$
${t^{ - 2}} = {t_1}^{ - 2} + {t_2}^{ - 2}$
किसी चिकने नत समतल पर द्रव्यमान $M$ दो स्प्रिंग के मध्य में चित्रानुसार रखा हुआ है तथा स्प्रिंगों के दूसरे सिरे दृढ आधारों से जुडे़ हैं। प्रत्येक स्प्रिंग का बल नियतांक $K$ है। यदि स्प्रिंग के भार नगण्य हो तब इस द्रव्यमान की सरल आवर्त गति का आवर्तकाल होगा
किसी स्प्रिंग से लटके $m$ द्रव्यमान का आवर्तकाल $2$ सैकण्ड है तब $4m$ द्रव्यमान का आवर्तकाल .... सैकण्ड होगा
एक स्प्रिंग में $10$ फेरे हैं एवं इसका स्प्रिंग नियतांक $k$ है। इसे समान दो भागों में काट दिया जाता है तब प्रत्येक नई स्प्रिंग का स्प्रिंग नियतांक होगा
दिये गये चित्र में $\mathrm{M}$ द्रव्यमान के गुटके की सरल आवर्त गति का आवर्तकाल $\pi \sqrt{\frac{\alpha \mathrm{M}}{5 \mathrm{~K}}}$ है, जहाँ $\alpha$ का मान. . . . . . . . . . है।
एक हल्की, उध्र्वाधर लटकी स्प्रिंग के निचले सिरे से जुड़ा हुआ कण कम्पन कर रहा है। कण का अधिकतम वेग $15$ मी/सै है तथा दोलनकाल $628$ मिली सैकण्ड है। गति का आयाम (सेमी में)