व्यंजक $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ के विस्तार में ${x^k}$ का गुणांक $(0 \le k \le n)$ है

  • A

    $^{n + 1}{C_{k + 1}}$

  • B

    $^n{C_k}$

  • C

    $^n{C_{n - k - 1}}$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ के प्रसार में $x^9$ का गुणांक एवं $\left(\alpha \mathrm{x}-\frac{1}{\beta \mathrm{x}^3}\right)^{11}$ के प्रसार में $\mathrm{x}^{-9}$ का गुणांक बराबर हैं तब $(\alpha \beta)^2$ बराबर है____________. 

  • [JEE MAIN 2023]

माना $2^{(\mathrm{x}-2) \log _2 3}$ की बढ़ती घातों में $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$, के द्विपद प्रसार में छठा पद $21$ है। यदि इस प्रसार में दूसरा, तीसरा तथा चौथा द्विपद गुणांक एक $A.P.$ के क्रमशः पहला, तीसरा तथा पाँचवा पद हैं, तो $\mathrm{x}$ के सभी संभव मानों के वर्गों का योग है____________.

  • [JEE MAIN 2023]

${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $x$ से स्वतंत्र पद है  

यदि $\left(\sqrt{ x }-\frac{ k }{ x ^{2}}\right)^{10}$ के द्विपद प्रसार में अचर में पद $405$ , है तो $| k |$ बराबर है 

  • [JEE MAIN 2020]

यदि  ${(1 + x)^m}$ के द्विपद प्रसार में तृतीय पद  $ - \frac{1}{8}{x^2}$ है, तब $m$ का परिमेय मान है