${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$ ના વિસ્તરણમાં અચળપદ કેટલામું હશે. ?
$10^{th}$
$9^{th}$
$8^{th}$
$7^{th}$
અહી $(3+6 x)^{n}$ ના દ્રીપદી વિસ્તરણમાં $9^{\text {th }}$ મુ પદ એ $6 x$ ની વધતી ઘાતાંકમાં $x=\frac{3}{2}$ આગળ મહતમ થાય છે . અહી $n$ ની ન્યૂનતમ કિમંત $n_{0}$ છે. જો $k$ એ $x ^{6}$ અને $x ^{3}$ ના સહગુણકનો ગુણોતર હોય તો $k + n _{0}$ ની કિમંત મેળવો.
${(1 + x)^{15}}$ ના વિસ્તરણમાં ${(2r + 3)^{th}}$ અને ${(r - 1)^{th}}$ ના સહગુણક સમાન હોય ,તો r મેળવો.
જો $\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$ ના વિસ્તરણમાં $x$ થી સ્વતંત્ર પદ $105$ હોય, તો $\mathrm{a}^2=$...............
${\left( {x - \frac{1}{x}} \right)^{11}}$ ના વિસ્તરણમાં આવેલા બે મધ્યમપદો મેળવો.
${\left( {a - b} \right)^n},n \ge 5,\;$નાં દ્રિપદી વિસ્તરણમાં પાંચમું અને છઠ્ઠુ પદનો સરવાળો શૂન્ય હોયતો , $ a/b $ = ______ .