જો $\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$ ના વિસ્તરણમાં $x$ થી સ્વતંત્ર પદ $105$ હોય, તો $\mathrm{a}^2=$...............
$4$
$9$
$6$
$2$
અહી દ્રીપદી $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ ના વિસ્તરણમાં $\frac{1}{\sqrt[4]{3}}$ ની વધતી ઘાતાંક માં શરૂઆત થી પાંચમું પદ અને અંતથી પાંચમું પદનો ગુણોતર $\sqrt[4]{6}: 1$ છે. જો શરૂઆતથી છઠ્ઠુ પદ $\frac{\alpha}{\sqrt[4]{3}}$ હોય તો $\alpha$ ની કિમંત મેળવો.
${\left( {x - \frac{1}{x}} \right)^6}$ ના વિસ્તરણમાં અચળ પદમેળવો.
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$ ના વિસ્તરણનું $13$ મું પદ શોધો.
${\left( {x\sin \theta + \frac{{\cos \theta }}{x}} \right)^{10}}$ ના વિસ્તરણમાં અચળ પદની મહત્તમ કિમત મેળવો
${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો.