$(1+a)^{m+n}$ ના વિસ્તરણમાં વર્ષ $a^{m}$ અને $a^{n}$ ના સહગુણકો સમાન છે તેમ સાબિત કરો.
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}=^{n} C_{r} a^{n-r} b^{r}$
Assuming that $a^{m}$ occurs in the $(r+1)^{th}$ term of the expansion $(1+a)^{m+n},$ we obtain ${T_{r + 1}} = {\,^{m + n}}{C_r}{(1)^{m + n - r}}{(a)^r} = {\,^{m + n}}{C_r}{a^r}$
Comparing the indices of a in $a^{m}$ in $T_{r+1},$
We obtain $r = m$
Therefore, the coefficient of $a^{m}$ is
${\,^{m + n}}{C_m} = \frac{{(m + n)!}}{{m!(m + n - m)!}} = \frac{{(m + n)!}}{{m!n!}}$ ...........$(1)$
Assuming that $a^{n}$ occurs in the $(k+1)^{t h}$ term of the expansion $(1+a)^{m+n},$ we obtain
${T_{k + 1}} = {\,^{m + n}}{C_k}{(1)^{m + n - k}}{(a)^k} = {\,^{m + n}}{C_k}{(a)^k}$
Comparing the indices of a in $a^{n}$ and in $T_{k+1}$
We obtain
$k=n$
Therefore, the coefficient of $a^{n}$ is
${\,^{m + n}}{C_n} = \frac{{(m + n)!}}{{n!(m + n - n)!}} = \frac{{(m + n)!}}{{n!m!}}$ ............$(2)$
Thus, from $(1)$ and $(2),$ it can be observed that the coefficients of $a^{m}$ and $a^{n}$ in the exansion of $(1+a)^{m+n}$ are equal
${\left( {{x^2} - \frac{{3\sqrt 3 }}{{{x^3}}}} \right)^{10}}$ ના વિસ્તરણમાં અચળપદ મેળવો.
જો $(a+b)^{n}$ ના વિસ્તરણનાં પ્રથમ ત્રણ પદો અનુક્રમે $729, 7290$ અને $30375$ હોય, તો $a, b$ અને $n$ શોધો.
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં અચળપદ મેળવો.
જો ${\left( {2 + \frac{x}{3}} \right)^{55}}$ ના વિસ્તરણમાં $x$ ની ઘાતક અનુક્રમે વધે છે અને બે ક્રમિક પદમાં આવેલ $x$ની ઘાતાંકના સહગુણક સરખા હોય તો તે પદો મેળવો.
જો ${[x + {x^{{{\log }_{10}}}}^{(x)}]^5}$ ના વિસ્તરણમાં ત્રીજું પદ $10,00,000$ હોય તો $x$ મેળવો.