વિદ્યુતક્ષેત્ર શોધવા ગાઉસનો નિયમ $|\overrightarrow{\mathrm{E}}|=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}|\mathrm{A}|}$ વાપરવામાં આવે છે.જ્યાં $\varepsilon_{0}$ શૂન્યાવકાશની પરમિટિવિટી, $A$ ગાઉસીયન સપાટીનું ક્ષેત્રફળ અને $q_{enc}$ એ ગાઉસીયન સપાટીની અંદર રહેલ વિજભાર છે.ઉપરનું સૂત્ર ક્યારે વાપરવામાં આવે છે?
માત્ર જ્યારે ગાઉસીયન સપાટી સમસ્થિતિમાન સપાટી હોય ત્યારે જ
સપાટી માટે $|\overrightarrow{\mathrm{E}}|=$ અચળ હોય ત્યારે જ
કોઈ પણ પ્રકારની ગાઉસીયન સપાટી
જ્યારે ગાઉસીયન સપાટી સમસ્થિતિમાન સપાટી અને સપાટી પર $|\overrightarrow{\mathrm{E}}|$ અચળ હોય
એક વિદ્યુતભારીત વસ્તુ સાથે સંકળાયેલું વિદ્યુત ફલક્સ $\phi$ છે. આ પદાર્થને હવે ધાતુના પાત્રની અંદર મૂકવામાં આવ્યો છે. પાત્રની બહાર ફલક્સ $\phi$ કેટલું હશે?
$10 \,cm$ અને $15 \,cm$ ની બાજુઓ ધરાવતા લંબયોરસ પૃષ્ઠને એકરૂપ વિદ્યુતક્ષેત્ર $25 \,V / m$ માં એવી રીતે મૂકવામાં આવી છે કે જેથી પૃષ્ઠ વિદ્યુતક્ષેત્રની દિશા સાથે $30^{\circ}$ ખૂણો બનાવે તો આ લંબચોરસ પૃષ્ઠમાંથી વિદ્યુતક્ષેત્રનું ફલક્સ ................ $Nm ^2 / C$
ધન વિદ્યુતભારના વિદ્યુતક્ષેત્રની આકૃતિ દોરો.
સાદા વિધુતભાર વિતરણની ક્ષેત્રરેખાઓ દોરો.
$a/4$ ત્રિજ્યાની તકતી જે સમાન વિતરણ વિજભાર $6 c$ ધરાવે છે. તેને $x - y$ સમતલમા $(-a / 2,0,0)$ કેન્દ્ર સાથે તે માં મૂકવામાં આવે છે.$a$ લંબાઈનો સળિયો જે સમાન વિતરણ વીજભાર $8c$ ધરાવે છે તેને $X = a / 4$ થી $X =5 a / 4$ સુધી $X - axis$ પર મૂકેલ છે. જો બિંદુવત વીજભાર $-7 c$ અને $3 c$ ને $(a / 4,-a / 4,0)$ પર અને $(-3 a / 4,3 a / 4,0)$ પર મૂકેલ છે.બે સપાટી, $x=\pm a / 2, \quad Y =\pm a / 2, \quad Z =\pm a / 2$ દ્વારા બનતા ગોળાકાર સપાટીને ધ્યાનમાં લો. તેમાંથી પસાર થતું વિદ્યુત ફ્લક્સ $..........$