$a/4$ ત્રિજ્યાની તકતી જે સમાન વિતરણ વિજભાર $6 c$ ધરાવે છે. તેને $x - y$ સમતલમા $(-a / 2,0,0)$ કેન્દ્ર સાથે તે માં મૂકવામાં આવે છે.$a$ લંબાઈનો સળિયો જે સમાન વિતરણ વીજભાર $8c$ ધરાવે છે તેને $X = a / 4$ થી $X =5 a / 4$ સુધી $X - axis$ પર મૂકેલ છે. જો બિંદુવત વીજભાર $-7 c$ અને $3 c$ ને $(a / 4,-a / 4,0)$ પર અને $(-3 a / 4,3 a / 4,0)$ પર મૂકેલ છે.બે સપાટી, $x=\pm a / 2, \quad Y =\pm a / 2, \quad Z =\pm a / 2$ દ્વારા બનતા ગોળાકાર સપાટીને ધ્યાનમાં લો. તેમાંથી પસાર થતું વિદ્યુત ફ્લક્સ $..........$
$\frac{-2\,C }{\varepsilon_0}$
$\frac{2\,C }{\varepsilon_0}$
$\frac{10\,C }{\varepsilon_0}$
$\frac{12\,C }{\varepsilon_0}$
જો બંધ પૃષ્ઠમાં દાખલ થતું અને બહાર આવતું ફલક્સ અનુક્રમે $\phi_1$ અને $\phi_2$ છે. પૃષ્ઠની અંદરની બાજુએ વિદ્યુતભાર ........ હશે.
આકૃતીમાં વિદ્યુતભાર રચનાને કારણે વિદ્યુતક્ષેત્ર રેખાઓ દર્શાવેલ છે. આ પરથી આપણો કહીં શકીએે કે
$20$ યુનિટ ક્ષેત્રફળ ધરાવતી સપાટી $Y-Z$ સમતલમાં છે,જો વિદ્યુતક્ષેત્ર $(5 \hat{i}+4 \hat{j}+9 \hat{k})$ હોય તો સપાટીમાંથી પસાર થતું ફલક્સ શોધો. (એકમ માં)
$1\, mm$ ત્રિજ્યાના લાંબા સુરેખ તાર પર વિદ્યુતભાર સમાન રીતે વિતરિત થયેલો છે. તારની પ્રતિ $cm$ લંબાઈ $Q$ દીઠ વિદ્યુતભાર $Q$ કુલંબ છે. $50\, cm$ ત્રિજ્યા અને $1\, m$ લંબાઈના તારથી સંમિત રીતે ઘેરાયેલો છે. નળાકાર ના પૃષ્ઠમાંથી પસાર થતું કુલ ફલક્સ .......... છે.
જો વિદ્યુતફલક્સ ગાઉસના પૃષ્ઠમાંથી બહાર આવતું હોય તો પૃષ્ઠ સાથે શું સંકળાયેલું હશે ?