In each of the following numbers rationalise the denominator

$\frac{1}{5+2 \sqrt{3}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1}{5+2 \sqrt{3}}=\frac{1}{5+2 \sqrt{3}} \times \frac{5-2 \sqrt{3}}{5-2 \sqrt{3}}$

$=\frac{1(5-2 \sqrt{3})}{(5)^{2}-(2 \sqrt{3})^{2}}$

$=\frac{5-2 \sqrt{3}}{25-12}$

$=\frac{5-2 \sqrt{3}}{13}$

Similar Questions

Find four rational numbers between $\frac{2}{9}$ and $\frac{2}{7}$

Find three different irrational numbers between the rational numbers $\frac{1}{3}$ and $\frac{7}{9}$.

$\sqrt[4]{\sqrt[3]{2^{2}}}$ equals

Simplify the following expressions

$(3+\sqrt{5})(4-\sqrt{11})$

Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0 .$

$0.5 \overline{7}$