Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0 .$
$0.5 \overline{7}$
Let, $x=0.5 \overline{7}$
$\therefore x=0.577 \ldots$ $....(1)$
Now, multiplying both the sides by $10.$
$10 x=5.77 \ldots$ $...(2)$
Subtract $(1)$ from $(2).$
$10 x=5.77 \ldots$
$\frac{-x=0.57\cdots}{9 x=5.2}$
$\therefore x=\frac{5.2}{9}=\frac{52}{90}=\frac{26}{45}$
Thus, $0.5 \overline{7}=\frac{26}{45}$
Rationalise the denominator in each of the following
$\frac{18}{3 \sqrt{2}-2 \sqrt{3}}$
Insert a rational number and an irrational number between the following:
$\sqrt{2}$ and $\sqrt{3}$
If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$\left(5^{-2}\right)^{3}=\ldots \ldots \ldots$
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$.............$ is a rational number between $7$ and $8 .$