Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0 .$

$0.5 \overline{7}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let, $x=0.5 \overline{7}$

$\therefore x=0.577 \ldots$    $....(1)$

Now, multiplying both the sides by $10.$

$10 x=5.77 \ldots$        $...(2)$

Subtract $(1)$ from $(2).$

$10 x=5.77 \ldots$

$\frac{-x=0.57\cdots}{9 x=5.2}$

$\therefore x=\frac{5.2}{9}=\frac{52}{90}=\frac{26}{45}$

Thus, $0.5 \overline{7}=\frac{26}{45}$

Similar Questions

Rationalise the denominator in each of the following

$\frac{18}{3 \sqrt{2}-2 \sqrt{3}}$

Insert a rational number and an irrational number between the following:

$\sqrt{2}$ and $\sqrt{3}$

If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.

For each question, select the proper option from four options given, to make the statement true : (Final answer only)

$\left(5^{-2}\right)^{3}=\ldots \ldots \ldots$

For each question, select the proper option from four options given, to make the statement true : (Final answer only)

$.............$ is a rational number between $7$ and $8 .$