Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$
$\frac{4}{3 \sqrt{3}-2 \sqrt{2}}+\frac{3}{3 \sqrt{3}+2 \sqrt{2}}$
Find which of the variables $x, y, z$ and $u$ represent rational numbers and which irrational numbers:
$(i)$ $x^{2}=5$
$(ii)$ $\quad y^{2}=9$
$(iii)$ $z^{2}=.04$
$(iv)$ $u^{2}=\frac{17}{4}$
Find three different irrational numbers between the rational numbers $\frac{1}{4}$ and $\frac{4}{5}$.
Find the value
$625^{\frac{3}{4}}$
Rationalise the denominator of the following:
$\frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}$