એક પ્રવેશ કસોટીને બે પરીક્ષાના આધાર પર શ્રેણીબદ્ધ કરવામાં આવે છે. યાદચ્છિક રીતે પસંદ કરેલા વિદ્યાર્થીની પહેલી પરીક્ષામાં પાસ થવાની સંભાવના $0.8$ છે અને બીજી પરીક્ષામાં પાસ થવાની સંભાવના $0.7$ છે. બંનેમાંથી ઓછામાં ઓછી એક પરીક્ષામાં પાસ થવાની સંભાવના $0.95$ છે. બંને પરીક્ષામાં પાસ થવાની સંભાવના શું છે?
Let $A$ and $B$ be the events of passing first and second examinations respectively.
Accordingly, $P(A)=0.8$, $P(B)=0.7$ and $P ( A$ or $B )=0.95$
We know that $P ( A$ or $B )= P ( A )+ P ( B )- P ( A$ and $B )$
$0.95=0.8+0.7- P ( A$ and $B )$
$P ( A$ and $B )=0.8+0.7-0.95=0.55$
Thus, the probability of passing both the examinations is $0.55$.
ભારતને ટોસ જીતવાની સંભાવના $3/4$ છે. જો તે ટોસ જીતે, તો મેચ જીતવાની સંભાવના $4/5$ થાય નહિતર માત્ર $1/2$ થાય તો ભારત મેચ જીતે તેની સંભાવના મેળવો.
$P(A \cup B) = P(A \cap B)$ તો જ શક્ય બને જો $P(A)$ અને $P(B)$ વચ્ચે .. . . પ્રકારનો સંબંધ બને.
ભારતએ વેસ્ટઇંડીઝ અને ઓસ્ટ્રેલીયા દરેક સાથે બે મેચ રમે છે.જો ભારતને મેચમાં $0,1$ અને $2$ પોઇન્ટ મળે તેની સંભાવના $0.45,0.05$ અને $0.50$ છે.દરેક મેચના નિર્ણય સ્વંતત્ર હોય,તો ભારતને ઓછામાં ઓછા $7$ પેાઇન્ટ મળે તેની સંભાવના મેળવો.
ધારો કે $A, B, C $ જોડયુક્ત રીતે નિરપેક્ષ ઘટના હોય, જ્યાં $P(C)>0$ અને
$P(A \cap B \cap C)=0 $ હોય, તો $P(A' \cap B'|C) $ બરાબર શું થાય ?
ધારોકે બે છ મુખી સમતોલ પાસાઓ $ A $ અને $B$ ને એક સાથે ઉછાળવામાં આવે છે. જો $E_1$ એ પાસા $ A$ પર ચાર આવે તે ઘટના દર્શાવે છે, $ E_2$ એ પાસા $B$ પર બે આવે તે ઘટના દર્શાવે છે અને $E_3$ એ બંને પાસા પર આવતી સંખ્યાઓનો સરવાળો એકી આવે તે ઘટના દર્શાવે છે, તો નીચેના માંથી કયું વિધાન ખોટું છે?