In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is $0.8$ and the probability of passing the second examination is $0.7 .$ The probability of passing at least one of them is $0.95 .$ What is the probability of passing both ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ and $B$ be the events of passing first and second examinations respectively.

Accordingly, $P(A)=0.8$, $P(B)=0.7$ and $P ( A$ or $B )=0.95$

We know that $P ( A$ or $B )= P ( A )+ P ( B )- P ( A$ and $B )$

$0.95=0.8+0.7- P ( A$ and $B )$

$P ( A$ and $B )=0.8+0.7-0.95=0.55$

Thus, the probability of passing both the examinations is $0.55$.

Similar Questions

If ${A_1},\,{A_2},...{A_n}$ are any $n$ events, then

For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is

  • [IIT 1996]

An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on the is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered $1, 2, 3,….., 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$ is

  • [JEE MAIN 2019]

Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$

A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $