એક ઉસ્ચતર માધ્યમિક શાળાના $220$ વિદ્યાર્થાઓના સર્વેક્ષણમાં, એવું જોવામાં આવ્યુ છે કે ઓછામાં ઓછા $125$ તથા વધુમા વધુ $130$ વિદ્યાથીઓ ગણિત શાસ્ત્ર ભણે છે; ઓછામાં ઓછા $85$ અને વધુમા વધુ $95$ ભૌતિકશાસ્ત્ર ભણે છે; ઓછામાં ઓછા $75$ અને વધુમા વધુ $90$ ૨સાયણશાસ્ત્ર ભણે છે; $30$ બન્ને ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ભણે છે; $50$ બન્ને રસાયણશાસ્ત્ર અને ગણિતશાસ્ર ભણે છે; $40$ બન્ને ગણિતશાસ્ર અને ભૌતિકશાસ્ત્ર ભણે છે તથા $10$ આ પૈકીના કોઈ પણ વિષયો ભણતા નથી. ધારોકે $\mathrm{m}$ અને $\mathrm{n}$ અનુક્રમે આ ત્રણે વિષયો ભણતા વિદ્યાર્થાઓની ઓછામાં ઓછી તથા વધુમાં વધુ સંખ્યા છે. તો $\mathrm{m}+\mathrm{n}=$ ...........
$50$
$45$
$78$
$49$
એક સમિતિમાં $50$ વ્યક્તિઓ ફ્રેંચ બોલે છે, $20$ સ્પેનિશ બોલે છે અને $10$ વ્યક્તિઓ બંને સ્પેનિશ અને ફ્રેંચ બંને બોલે છે. કેટલી વ્યક્તિઓ આ બે ભાષાઓમાંથી ઓછામાં ઓછી એક ભાષા બોલી શકે છે ?
સ્કુલની ત્રણ ટીમમાં $21$ ક્રિકેટમાં , $26$ હોકીમાં ,અને $29$ વિર્ધાથી ફુટબોલમાં છે.આ પૈકી $14$ હોકી અને ક્રિકેટમાં , $15$ હોકી અને ફુટબોલમાં , અને $12$ વિર્ધાથી ફુટબોલ અને ક્રિકેટમાં છે.જો $8$ વિર્ધાથી બધીજ રમતમાં હોય તો ત્રણેય ટીમમાં રહેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.
$20$ શિક્ષકો ગણિત અથવા ભૈતિકવિજ્ઞાન ભણાવે છે.જો $12$ શિક્ષકો ગણિત અને $4$ બંને વિષય ભણાવે છે.તો ભૈતિકવિજ્ઞાન ભણાવતાં શિક્ષકોની સંખ્યા મેળવો.
એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.
એક સર્વે અનુસાર એક ઓફિસમાં $73 \%$ કર્મચારીઓને કોફી પીવાનું પસંદ કરે જ્યારે $65 \%$ કર્મચારીઓને ચા પીવાનું પસંદ છે જો $x$ એ ટકાવારી દર્શાવે છે કે ચા અને કોફી પીવાના પસંદ કરતા કર્મચારીઓ દર્શાવે તો $x$ ............ ના હોઈ શકે