In a parallel plate capacitor set up, the plate area of capacitor is $2 \,m ^{2}$ and the plates are separated by $1\, m$. If the space between the plates are filled with a dielectric material of thickness $0.5\, m$ and area $2\, m ^{2}$ (see $fig.$) the capacitance of the set-up will be $.........\, \varepsilon_{0}$

(Dielectric constant of the material $=3.2$ ) and (Round off to the Nearest Integer)

981-652

  • [JEE MAIN 2021]
  • A

    $1$

  • B

    $5$

  • C

    $3$

  • D

    $6$

Similar Questions

Two identical capacitors $1$ and $2$ are connected in series. The capacitor $2$ contains a dielectric slab of constant $K$ as shown. They are connected to a battery of emf $V_0\ volts$ . The dielectric slab is then removed. Let $Q_1$ and $Q_2$ be the charge stored in the capacitors before removing the slab and $Q'_1$ , and $Q'_2$ be the values after removing the slab. Then 

A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height $50 \mathrm{~cm}$, as shown in the figure. It has two parallel electrically conducting walls each of area $50 \mathrm{~cm} \times 50 \mathrm{~cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant $3$ at a uniform rate of $250 \mathrm{~cm}^3 \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after $10$ seconds? [Given: Permittivity of free space $\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

  • [IIT 2023]

A parallel plate capacitor has plates of area $A$ separated by distance $d$ between them. It is filled with a dielectric which has a dielectric constant that varies as $\mathrm{k}(\mathrm{x})=\mathrm{K}(1+\alpha \mathrm{x})$ where $\mathrm{x}$ is the distance measured from one of the plates. If $(\alpha \text {d)}<<1,$ the total capacitance of the system is best given by the expression 

  • [JEE MAIN 2020]

The capacity of a parallel plate capacitor with no dielectric substance but with a separation of $0.4 \,cm$ is $2\,\mu \,F$. The separation is reduced to half and it is filled with a dielectric substance of value $2.8$. The final capacity of the capacitor is.......$\mu \,F$

A source of potential difference $V$ is connected to the combination of two identical capacitors as shown in the figure. When key ' $K$ ' is closed, the total energy stored across the combination is $E _{1}$. Now key ' $K$ ' is opened and dielectric of dielectric constant 5 is introduced between the plates of the capacitors. The total energy stored across the combination is now $E _{2}$. The ratio $E _{1} / E _{2}$ will be :

  • [JEE MAIN 2022]