A parallel plate capacitor has plates of area $A$ separated by distance $d$ between them. It is filled with a dielectric which has a dielectric constant that varies as $\mathrm{k}(\mathrm{x})=\mathrm{K}(1+\alpha \mathrm{x})$ where $\mathrm{x}$ is the distance measured from one of the plates. If $(\alpha \text {d)}<<1,$ the total capacitance of the system is best given by the expression 

  • [JEE MAIN 2020]
  • A

    $\frac{\mathrm{AK} \varepsilon_{0}}{\mathrm{d}}\left(1+\frac{\alpha \mathrm{d}}{2}\right)$

  • B

    $\frac{\mathrm{A} \varepsilon_{0} \mathrm{K}}{\mathrm{d}}\left(1+\left(\frac{\alpha \mathrm{d}}{2}\right)^{2}\right)$

  • C

    $\frac{\mathrm{A} \varepsilon_{0} \mathrm{K}}{\mathrm{d}}\left(1+\frac{\alpha^{2} \mathrm{d}^{2}}{2}\right) $

  • D

    $ \frac{\mathrm{AK} \varepsilon_{0}}{\mathrm{d}}(1+\alpha \mathrm{d})$

Similar Questions

A frictionless dielectric plate $S$ is kept on a frictionless table $T$. A charged parallel plate capacitance $C$ (of which the plates are frictionless) is kept near it. The plate $S$ is between the plates. When the plate $S$ is left between the plates

A capacitor is half filled with a dielectric $(K=2)$ as shown in figure A. If the same capacitor is to be filled with same dielectric as shown, what would be the thickness of dielectric so that capacitor still has same capacity?

A parallel plate capacitor is filled with $3$ dielectric materials of same thickness, as shown in the sketch. The dielectric constants are such that $k_3 > k_2 > k_1$. Let the magnitudes of the electric field in and potential drops across each dielectric be $E_3$, $E_2$,$ E_1$, $\Delta V_3$, $\Delta V_2$ and $\Delta V_1$, respectively. Which one of the following statement is true ?

A composite parallel plate capacitor is made up of two different dielectric materials with different thickness $\left(t_{1}\right.$ and $\left.t_{2}\right)$ as shown in figure. The two different dielectric material are separated by a conducting foil $F$. The voltage of the conducting foil is $.....V$

  • [JEE MAIN 2022]

The electric field between the plates of a parallel plate capacitor when connected to a certain battery is ${E_0}$. If the space between the plates of the capacitor is filled by introducing a material of dielectric constant $K$ without disturbing the battery connections, the field between the plates shall be