If the probability of a horse $A$ winning a race is $1/4$ and the probability of a horse $B$ winning the same race is $1/5$, then the probability that either of them will win the race is
$\frac{1}{{20}}$
$\frac{9}{{20}}$
$\frac{{11}}{{20}}$
$\frac{{19}}{{20}}$
If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is
The probabilities that a student passes in Mathematics, Physics and Chemistry are $m, p$ and $c$ respectively. On these subjects, the student has a $75\%$ chance of passing in at least one, a $50\%$ chance of passing in at least two and a $40\%$ chance of passing in exactly two. Which of the following relations are true
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.
Let $A$ and $B$ be events for which $P(A) = x$, $P(B) = y,$$P(A \cap B) = z,$ then $P(\bar A \cap B)$ equals
If $E$ and $F$ are independent events such that $0 < P(E) < 1$ and $0 < P\,(F) < 1,$ then