એક ઘટના $A$ પોતાનાથી સ્વતંત્ર હોય કે જ્યારે $P (A) = ……$
$0$
$1$
$0, 1$
આમાંથી એકેય નહિ.
ભૌતિકશાસ્ત્રમાં નાપાસ થવાની શક્યતા $20\%$ છે. અને ગણિતશાસ્ત્રમાં નાપાસ થવાની શક્યતા $10\%$ છે. તો ઓછામાં ઓછા એક વિષયમાં નાપાસ હોવાની સંભાવના કેટલા ............. $\%$ થાય ?
ત્રણ ઘટનાઓ $A, B$ અને $C,$ માટે $P($ માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $) = {p^2},$ કે જ્યાં $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો.
બે થેલી $A$ અને $B$ અનુક્રમે $2$ સફેદ, $3$ કાળા, $4$ લાલ અને $3$ સફેદ, $4$ કાળા, $5$ લાલ દડા ધરાવે છે. જો એક દડો $A$ થેલીમાંથી ઉપાડી $B$ થેલીમાં મૂકવામાં આવે છે. હવે જો દડો $B$ થેલીમાંથી ઉપાડવામાં આવે, તો આપેલ માહિતીના આધારે $B$ થેલીમાંથી સફેદ દડો ઉપાડવાની સંભાવના કેટલી થાય ?