In a town of $10,000$ families it was found that $40\%$ family buy newspaper $A, 20\%$ buy newspaper $B$ and $10\%$ families buy newspaper $C, 5\%$ families buy $A$ and $B, 3\%$ buy $B$ and $C$ and $4\%$ buy $A$ and $C$. If $2\%$ families buy all the three newspapers, then number of families which buy $A$ only is

  • A

    $3100$

  • B

    $3300$

  • C

    $2900$

  • D

    $1400$

Similar Questions

In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

A group of $40$ students appeared in an examination of $3$ subjects - Mathematics, Physics  Chemistry. It was found that all students passed in at least one of the subjects, $20$ students passed in Mathematics, $25$ students passed in Physics, $16$ students passed in Chemistry, at most $11$ students passed in both Mathematics and Physics, at most $15$ students passed in both Physics and Chemistry, at most $15$ students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is___________.

  • [JEE MAIN 2024]

In a class of $55$ students, the number of students studying different subjects are $23$ in Mathematics, $24$ in Physics, $19$ in Chemistry, $12$ in Mathematics and Physics, $9$ in Mathematics and Chemistry, $7$ in Physics and Chemistry and $4$ in all the three subjects. The total numbers of students who have taken exactly one subject is

In a battle $70\%$ of the combatants lost one eye, $80\%$ an ear, $75\%$ an arm, $85\%$ a leg, $x\%$ lost all the four limbs. The minimum value of $x$ is

In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?