There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{1}$ or chemical $C_{2}$
Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$
Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$
The number of individuals exposed either to chemical $C_{1}$ or to chemical $C_{2}$, i.e., $n( A \cup B )=n( A )+n( B )-n( A \cap B )$
$=120+50-30=140$
In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is
An organization awarded $48$ medals in event '$A$',$25$ in event '$B$ ' and $18$ in event ' $C$ '. If these medals went to total $60$ men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?
A class has $175$ students. The following data shows the number of students obtaining one or more subjects. Mathematics $100$, Physics $70$, Chemistry $40$; Mathematics and Physics $30$, Mathematics and Chemistry $28$, Physics and Chemistry $23$; Mathematics, Physics and Chemistry $18$. How many students have offered Mathematics alone
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C _{1}$ but not chemical $C _{2}$