In a geometric progression, if the ratio of the sum of first $5$ terms to the sum of their reciprocals is $49$, and the sum of the first and the third term is $35$ . Then the first term of this geometric progression is
$7$
$21$
$28$
$42$
Let for $n =1,2, \ldots \ldots, 50, S _{ a }$ be the sum of the infinite geometric progression whose first term is $n ^{2}$ and whose common ratio is $\frac{1}{(n+1)^{2}}$. Then the value of $\frac{1}{26}+\sum\limits_{n=1}^{50}\left(S_{n}+\frac{2}{n+1}-n-1\right)$ is equal to
Find the sum to indicated number of terms in each of the geometric progressions in $\left.1,-a, a^{2},-a^{3}, \ldots n \text { terms (if } a \neq-1\right)$
The difference between the fourth term and the first term of a Geometrical Progresssion is $52.$ If the sum of its first three terms is $26,$ then the sum of the first six terms of the progression is
If five $G.M.’s$ are inserted between $486$ and $2/3$ then fourth $G.M.$ will be