If five $G.M.’s$ are inserted between $486$ and $2/3$ then fourth $G.M.$ will be
$4$
$6$
$12$
$-6$
If $a,\;b,\;c$ are in $A.P.$, then ${3^a},\;{3^b},\;{3^c}$ shall be in
If ${\log _x}a,\;{a^{x/2}}$ and ${\log _b}x$ are in $G.P.$, then $x = $
Which term of the following sequences:
$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$ is $\frac{1}{19683} ?$
Find the $10^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $5,25,125, \ldots$
If the $n^{th}$ term of geometric progression $5, - \frac{5}{2},\frac{5}{4}, - \frac{5}{8},...$ is $\frac{5}{{1024}}$, then the value of $n$ is