$2 \mathrm{~L} \times 2 \mathrm{~L} \times \mathrm{L}$ विमा वाले एक घनाभ के पृष्ठ ' $\mathrm{S}$ ' जिसका क्षेत्रफल $4 \mathrm{~L}^2$ हैं, के केन्द्र पर $q$ आवेश रखा है। ' $\mathrm{S}$ ' के विपरीत पृष्ठ से गुजरने वाला फ्लक्स है:
$\frac{ q }{12 \varepsilon_0}$
$\frac{ q }{3 \varepsilon_0}$
$\frac{ q }{2 \varepsilon_0}$
$\frac{q}{6 \varepsilon_0}$
किसी स्थान पर विद्युत क्षेत्र त्रैज्यीय बाहर की ओर है जिसका परिमाण $E = A{\gamma _0}$ है। ${\gamma _0}$ त्रिज्या के गोले के अन्दर आवेश होगा
किसी अनन्त समतल आवेशित चादर के सामने $d$ दूरी पर एक आवेश $+Q$ स्थित है। विद्युत बल रेखाओं का सही चित्रण होगा
विद्युत बल रेखाओं के बारे में असत्य कथन है
$a$ भुजा वाले एक वर्ग के केन्द्र से सीधे ऊपर $a/2$ दूरी पर एक बिन्दु आवेश $q$ रखा है। वर्ग से निर्गत वैद्युत अभिवाह (फ्लक्स) का मान है
चित्र में दिखाये गये बक्से से होकर विधुत क्षेत्र $\overrightarrow{ E }=4 xi -\left( y ^{2}+1\right) \hat{ j } N / C$ निकलता है। यदि बक्से के $ABCD$ तथा $BCGF$ समतलों में से होकर जाने वाले फ्लक्स का मान क्रमश: $\phi_{ I }$ तथा $\phi_{ II }$ है तब इनमें अन्तर $\left(\phi_{ I }-\phi_{ II }\right)$ $\left( Nm ^{2} / C \right)$ में होगा $......$