In a cuboid of dimension $2 L \times 2 L \times L$, a charge $q$ is placed at the centre of the surface ' $S$ ' having area of $4 L ^2$. The flux through the opposite surface to ' $S$ ' is given by
$\frac{ q }{12 \varepsilon_0}$
$\frac{ q }{3 \varepsilon_0}$
$\frac{ q }{2 \varepsilon_0}$
$\frac{q}{6 \varepsilon_0}$
Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.
Consider the following two statements:
$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.
$(II)$ A charge placed inside uniformly charged shell will experience a force.
Which of the above statements are valid?
The $S.I.$ unit of electric flux is
How does the electric field lines depend on area ?
A rectangular surface of sides $10 \,cm$ and $15 \,cm$ is placed inside acyniform electric field of $25 \,V / m$, such that the surface makes an angle of $30^{\circ}$ with the direction of electric field. Find the flux of the electric field through the rectangular surface .................. $Nm ^2 / C$
The electric field in a region is given $\vec E = a\hat i + b\hat j$ . Here $a$ and $b$ are constants. Find the net flux passing through a square area of side $l$ parallel to $y-z$ plane