किसी विद्यालय के $600$ विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि $150$ विद्यार्थी चाय, $225$ विद्यार्थी कॉफी तथा $100$ विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ be the set of all students who took part in the survey.

Let $T$ be the set of students taking tea.

Let $C$ be the set of students taking coffee.

Accordingly, $n(U)=600, n(T)=150, n(C)=225, n(T \cap C)=100$

To find : Number of student taking neither tea nor coffee i.e., we have to find $n\left(T^{\prime} \cap C^{\prime}\right)$

$n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime}$

$=n(U)-n(T \cup C)$

$=n(U)-[n(T)+n(C)-n(T \cap C)]$

$=600-[150+225-100]$

$=600-275$

$=325$

Hence, $325$ students were taking neither tea nor coffee.

Similar Questions

एक सर्वेक्षण में पाया गया कि $21$ लोग उत्पाद $A , 26$ लोग उत्पाद $B , 29$ लोग उत्पाद $C$ पसंद करते हैं। यदि $14$ लोग उत्पाद $A$ तथा $B , 12$ लोग उत्पाद् $C$ तथा $A , 14$ लोग उत्पाद $B$ तथा $C$ और $8$ लोग तीनो ही उत्पादों को पसंद करते हैं। ज्ञात कीजिए कि कितने लोग केवल उत्पाद $C$ को पसंद् करते हैं।

$500$ कार मालिकों से पूछताछ करनें पर पाया गया कि $400$ लोग $A$ प्रकार की कार के, $200$ लोग $B$ प्रकार की कार के तथा $500$ लोग $A$ और $B$ दोनों प्रकार की कारों के मालिक थे। क्या ये आँकडे सही हैं ?

$70$ व्यक्तियों के समूह में, $37$ कॉफ़ी, $52$ चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों में से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफ़ी और चाय दोनों को पसंद करते हैं ?

एक कक्षा में $100$ छात्र हैं, $15$ छात्रों ने केवल भौतिकी (लेकिन गणित और रसायन विज्ञान नहीं) को चुना, $3$ छात्रों ने केवल रसायन विज्ञान (लेकिन गणित और भौतिकी नहीं) को चुना, और $45$ छात्रों ने केवल गणित (लेकिन भौतिकी और रसायन विज्ञान नहीं) को चुना। शेष छात्रों में, पाया गया है कि $23$ छात्रों ने भौतिकी और रसायन विज्ञान को चुना है, $20$ छात्रों ने भौतिकी और गणित को चुना है, और $12$ छात्रों ने गणित और रसायन विज्ञान को चुना है। उन छात्रों की संख्या जिन्होंने तीनों विषयों को चुना है, हैं।

  • [KVPY 2021]

एक महाविद्यालय में फुटबाल के लिए $38,$ बास्केट बाल के लिए $15$ और क्रिकेट के लिए $20$ पदक प्रदान किए गए। यदि ये पदक कुल $58$ लोगों को मिले और केवल तीन लोगों को तीनों खेलों के लिए मिले, तो कितने लोगों को तीन में से ठीक-ठीक दो खेलों के लिए मिले ?