$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. માત્ર એક જ સમાચારપત્ર વાંચનાર વ્યક્તિઓની સંખ્યા શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the set of people who read newspaper $H.$

Let $B$ be the of people who read newspaper $T.$

Let $C$ be the set of people who read newspaper $I.$

Accordingly, $n(A)=25, n(B)=26,$ and $n(C)=26$

$n(A \cap C)=9, n(A \cap B)=11,$ and $n(B \cap C)=8$

$n(A \cap B \cap C)=3$

Let $U$ be the set of people who took part in the survey.

Let $a$ be the number of people who read newspapers $H$ and $T$ only.

Let $b$ denote the number of people who read newspapers $I$ and $H$ only.

Let $c$ denote the number of people who read newspapers $T$ and $I$ only.

Let $d$ denote the number of people who read all three newspapers.

Accordingly, $d=n(A \cap B \cap C)=3$

Now, $n(A \cap B)=a+d$

$n(B \cap C)=c+d$

$n(B \cap C)=c+d$

$n(C \cap A)=b+d$

$\therefore a+d+c+d+b+d=11+8+9=28$

$\Rightarrow a+b+c+d=28-2 d=28-6=22$

Hence, $(52-22)=30$ people read exactly one newspaper.

865-s261

Similar Questions

શાળાની હોકી ટીમમાં રમતા ધોરણ $XI$ ના વિદ્યાર્થીઓનો ગણ $X = \{ $ રામ, ગીતા, અકબર $\} $ છે. શાળાની ફૂટબૉલની ટીમમાં રમતા ધોરણ $XI$ ના વિદ્યાર્થીઓનો ગણ $Y = \{ $ ગીતા, ડેવિડ, અશોક $\} $ છે. $X \cup Y$ શોધો, અને તેનું અર્થઘટન કરો. 

$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો - ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.

  • [JEE MAIN 2024]

$70$ વ્યક્તિઓના જૂથમાં, $37$ કૉફી પસંદ કરે છે અને $52$ વ્યક્તિને ચા પસંદ છે. તથા દરેક વ્યક્તિ આ બે પીણાંમાંથી ઓછામાં ઓછું એક પીણું પસંદ કરે છે. કેટલી વ્યક્તિઓ કૉફી અને ચા બને પસંદ કરે છે ?

$500$ મોટરમાલિક વિષયક સંશોધનમાં માલૂમ પડ્યું કે $\mathrm{A}$ પ્રકારની મોટરના માલિકોની સંખ્યા $400$ અને $\mathrm{B}$ પ્રકારની મોટરના માલિકોની સંખ્યા $200$ છે. જ્યારે $50$ મોટર માલિકો $\mathrm{A}$ અને $\mathrm{B}$ બંને પ્રકારની મોટર ધરાવે છે. શું આ માહિતી સાચી છે ?

એક વર્ગમાં $100$ વિર્ધાથી છે જેમાંથી $55$ ગણિતમાં અને $67$ માં ભૈતિક વિજ્ઞાનમાં પાસ થાય છે.તો માત્ર ભૈતિક વિજ્ઞાનમાં પાસ થયેલ વિર્ધાથીની સંખ્યા મેળવો.