ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{2}$ ની અસર હોય, પરંતુ રસાયણ $C _{1}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$
Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$
From the Fig we have
$B=(B-A) \cup(A \cap B)$
and so, $\quad n( B )=n( B - A )+n( A \cap B )$
( Since $B - A$ and $A \cap B$ are disjoint .)
or $n(B - A) = n(B) - n(A \cap B)$
$ = 50 - 30 = 20$
Thus, the number of individuals exposed to chemical $C_{2}$ and not to chemical $C_{1}$ is $20 .$
એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.
$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. ઓછામાં ઓછું એક સમાચારપત્ર વાંચનાર
સ્કુલની ત્રણ ટીમમાં $21$ ક્રિકેટમાં , $26$ હોકીમાં ,અને $29$ વિર્ધાથી ફુટબોલમાં છે.આ પૈકી $14$ હોકી અને ક્રિકેટમાં , $15$ હોકી અને ફુટબોલમાં , અને $12$ વિર્ધાથી ફુટબોલ અને ક્રિકેટમાં છે.જો $8$ વિર્ધાથી બધીજ રમતમાં હોય તો ત્રણેય ટીમમાં રહેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
એક શહેરમાં $20\%$ લોકો કારમાં મુસાફરી કરે છે , $50\%$ લોકો બસમાં મુસાફરી કરે છે અને $10\%$ લોકો બસ અને કારમાં મુસાફરી કરે છે તો . . . . $\%$ લોકો કાર અથવા બસમાં મુસાફરી કરે છે.