$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $

  • A

    $0$

  • B

    $1$

  • C

    $\cos \theta - \sin \theta $

  • D

    $\cos \theta + \sin \theta $

Similar Questions

If $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$$ = \tan \alpha \tan \beta \tan \gamma $, then $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $

If $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ and $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ then  ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ is equal to

Find the value of the trigonometric function $\tan \frac{19 \pi}{3}$.

Prove that :

$\cot ^{2} \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}=6$

The equation ${\sec ^2}\theta = \frac{{4xy}}{{{{(x + y)}^2}}}$ is only possible when

  • [IIT 1966]