$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $
$0$
$1$
$\cos \theta - \sin \theta $
$\cos \theta + \sin \theta $
$\cot x - \tan x = $
Find the value of $\sin 15^{\circ}$
If $\sin (\alpha - \beta ) = \frac{1}{2}$ and $\cos (\alpha + \beta ) = \frac{1}{2},$ where $\alpha $ and $\beta $ are positive acute angles, then
If $A + B + C = \pi $ and $\cos A = \cos B\,\cos C,$ then $\tan B\,\,\tan C$ is equal to
$(m + 2)\sin \theta + (2m - 1)\cos \theta = 2m + 1,$ if