If $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ then $cos\theta_1 + cos\theta_2 + cos\theta_3=$
$3$
$2$
$1$
$0$
Prove the $\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$
In a right angled triangle the hypotenuse is $2 \sqrt 2$ times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are
If $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ will be
Prove that $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$
If $\frac{\sin ^4 x}{2}+\frac{\cos ^4 x}{3}=\frac{1}{5},$ then
$(A)$ $\tan ^2 x=\frac{2}{3}$ $(B)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{1}{125}$
$(C)$ $\tan ^2 x=\frac{1}{3}$ $(D)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{2}{125}$