In a $\triangle A B C$, points $X$ and $Y$ are on $A B$ and $A C$, respectively, such that $X Y$ is parallel to $B C$. Which of the two following equalities always hold? (Here $[P Q R]$ denotes the area of $\triangle P Q R)$.
$I$. $[B C X]=[B C Y]$
$II$. $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
Neither $I$ nor $II$
Only $I$
Only $II$
Both $I$ and $II$
Let a triangle be bounded by the lines $L _{1}: 2 x +5 y =10$; $L _{2}:-4 x +3 y =12$ and the line $L _{3}$, which passes through the point $P (2,3)$, intersect $L _{2}$ at $A$ and $L _{1}$ at $B$. If the point $P$ divides the line-segment $A B$, internally in the ratio $1: 3$, then the area of the triangle is equal to
The triangle formed by ${x^2} - 9{y^2} = 0$ and $x = 4$ is
Let $A (-3, 2)$ and $B (-2, 1)$ be the vertices of a triangle $ABC$. If the centroid of this triangle lies on the line $3x + 4y + 2 = 0$, then the vertex $C$ lies on the line
Let $PS$ be the median of the triangle with vertices $P(2,\;2),\;Q(6,\; - \;1)$ and $R(7,\;3)$. The equation of the line passing through $(1, -1)$ and parallel to $PS$ is
The equation to the sides of a triangle are $x - 3y = 0$, $4x + 3y = 5$ and $3x + y = 0$. The line $3x - 4y = 0$ passes through