$\triangle ABC ,$માં $\angle B$ કાટખૂણો છે. $AB = 24$ સેમી, $BC = 7$ સેમી હોય, તો નીચેના ગુણોત્તરોનું મૂલ્ય શોધો :
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$
Applying Pythagoras theorem for $\triangle ABC ,$ we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(24\, cm )^{2}+(7\, cm )^{2}$
$=(576+49) \,cm ^{2}$
$=625\, cm ^{2}$
$\therefore A C=\sqrt{625} cm =25\, cm$
$(i)\,\sin A\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{7}{25}$
$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC}$$=\frac{24}{25}$
$(ii)$
$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{A B}{A C}$
$=\frac{24}{25}$
$\cos C=\frac{\text { Side adjacent to } \angle C}{\text { Hypotenuse }}=\frac{B C}{A C}$
$=\frac{7}{25}$
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
જેમ-જેમ $\theta$ નું મૂલ્ય વધે, તેમ તેમ $\sin \theta$ નું મૂલ્ય વધે છે.
કિંમત શોધો :
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
$\sin 67^{\circ}+\cos 75^{\circ}$ ને $0^{\circ}$ અને $45^{\circ}$ વચ્ચેના માપવાળા ખૂણાના ત્રિકોણમિતીય ગુણોત્તર તરીકે દર્શાવો.
કાટકોણ ત્રિકોણ $A B C$ માં ખૂણો $B$ કાટખૂણો છે. જો $\tan A =1,$ તો ચકાસો કે $2 \sin A \cos A=1$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$