यदि दीर्घवृत्त $25 x ^2+4 y ^2=1$ पर स्थित बिन्दु $(\alpha, \beta)$ से परवलय $y ^2=4 x$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती है कि एक स्पर्श रेखा की प्रवणता, दूसरी स्पर्श रेखा की प्रवणता की चार गुना है, तो $(10 \alpha+5)^2+\left(16 \beta^2+50\right)^2$ का मान
$7982$
$2898$
$2929$
$3289$
माना $S =\left\{( x , y ) \in N \times N : 9( x -3)^2+16( y -4)^2 \leq 144\right\}$
तथा $T =\left\{( x , y ) \in R \times R :( x -7)^2+( y -4)^2 \leq 36\right\}$हैं। तो $n ( S \cap T )$ बराबर $............$ है।
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $26,$ नाभियाँ $(±5,0)$
बिंदु $(1,3)$ से दीर्घवृत्त $2 x^2+3 y^2=5$ पर डाली गई दो स्पर्श रेखाओं के बीच न्यून कोण है :
माना दीर्घवृत्त $9 x^2+4 y^2=36$ पर चार बिंदु $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ तथा $\mathrm{S}$ हैं। माना रेखाखंड $\mathrm{PQ}$ तथा $\mathrm{RS}$ परस्पर लंबवत है तथा मूलबिंदु से होकर जाते हैं। यदि $\frac{1}{(\mathrm{PQ})^2}+\frac{1}{(\mathrm{RS})^2}=\frac{\mathrm{p}}{\mathrm{q}}$, जहाँ $\mathrm{p}$ तथा $q$ असहभाज्य है, तो $\mathrm{p}+\mathrm{q}$ बराबर है :
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $16,$ नाभियाँ $(0,\pm 6) .$