प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $16,$ नाभियाँ $(0,\pm 6) .$
Length of minor axis $=16 ;$ foci $=(0,\,\pm 6)$
since the foci are on the $y-$ axis, the major axis is along the $y-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.
Accordingly, $2 b=16 \Rightarrow b=8$ and $c=6$
It is known that $a^{2}=b^{2}+c^{2}$
$\therefore a^{2}=8^{2}+6^{2}=64+36=100$
$\Rightarrow a=\sqrt{100}=10$
Thus, the equation of the ellipse is $\frac{x^{2}}{8^{2}}+\frac{y^{2}}{10^{2}}=1$ or $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
दीर्घवृत्त $x^{2}+4 y^{2}=4$ निर्देशक अक्षों से सरंखित एक आयत के अन्तर्गत है जो स्वयं बिन्दु $(4,0)$ से जाने वाले दूसरे दीर्घवृत्त के अन्तर्गत है। तब इस दीर्घवृत्त का समीकरण है
यदि रेखा $x\cos \alpha + y\sin \alpha = p$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ पर अभिलम्ब है, तो
माना $S$ तथा $S ^{\prime}$ दीर्घवृत्त की नाभि है तथा इसके लघुअक्ष का कोई एक सिरा $B$ है। यदि त्रिभुज $S ^{\prime} BS$ एक समकोण त्रिभुज है जिसमें $\angle B =90^{\circ}$ तथा क्षेत्रफल $\left(\triangle S ^{\prime} BS \right)$ $=8$ वर्ग इकाई हो, तो दीर्घवृत्त के नाभिलम्ब की लम्बाई होगी
दीर्घवृत्त $4{x^2} + {y^2} - 8x + 2y + 1 = 0$ की उत्केन्द्रता है
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$