If time $(t)$, velocity $(u)$, and angular momentum $(I)$ are taken as the fundamental units. Then the dimension of mass $({m})$ in terms of ${t}, {u}$ and ${I}$ is

  • [JEE MAIN 2021]
  • A

    $[t^{-1} u^{-2}\,I^{1}]$

  • B

    $[t^{1} u^{2}\,I^{-1}]$

  • C

    $[t^{-2} u^{-1}\,I^{1}]$

  • D

    $[t^{-1} u^{1}\,I^{-2}]$

Similar Questions

Time $(T)$, velocity $(C)$ and angular momentum $(h)$ are chosen as fundamental quantities instead of mass, length and time. In terms of these, the dimensions of mass would be

  • [JEE MAIN 2017]

Force $(F)$ and density $(d)$ are related as $F\, = \,\frac{\alpha }{{\beta \, + \,\sqrt d }}$ then dimension of $\alpha $ and $\beta$ are

If momentum $[ P ]$, area $[ A ]$ and time $[ T ]$ are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is :

  • [JEE MAIN 2022]

The equation of stationary wave is

$\mathrm{y}=2 \mathrm{a} \sin \left(\frac{2 \pi \mathrm{nt}}{\lambda}\right) \cos \left(\frac{2 \pi \mathrm{x}}{\lambda}\right)$

Which of the following is NOT correct

  • [JEE MAIN 2024]

To determine the Young's modulus of a wire, the formula is $Y = \frac{FL}{A\Delta L};$ where $L$ = length, $A = $area of cross-section of the wire, $\Delta L = $change in length of the wire when stretched with a force $F$. The conversion factor to change it from $CGS$ to $MKS$ system is .............. $10^{-1}\mathrm{N/m}^{2}$