જો બંધ સપાટી વડે ઘેરાતો વિધુતભાર શૂન્ય હોય, તો તે સપાટી પરના દરેક સ્થાને વિધુતક્ષેત્ર શૂન્ય હોવાનું સૂચવે છે ? બીજી બાજુ જો સપાટી પરના દરેક સ્થાને વિધુતક્ષેત્ર શૂન્ય હોય તો બંધ સપાટી વડે ઘેરાતો ચોખ્ખો (પરિણામી) વિધુતભાર શૂન્ય હોવાનું સૂચવે છે ?
ગોસનો નિયમ એવું સૂચવે છે કે જ્યારે સપાટી એવી પસંદ કરવાની હોય, તો થોડાક વિદ્યુતભારો અંદર અને થોડાક વિદ્યુતભારો બહાર હોય.
આ પરિસ્થિતિમાં ફલક્સ $\int_{J} \overrightarrow{ E } \cdot d \overrightarrow{ S }=\frac{q}{\epsilon_{0}}$ થી આપવામાં આવે છે.
આ સ્થિતિમાં ડાબી બાજુનું પદ વિદ્યુતક્ષેત્ર $E$ એ સપાદીની અંદર અને બહારના વિદ્યુતભારોના લીધે ઉદ્ભવતું વિદ્યુતક્ષેત્ર છે. સમીકરણની જમણી બાજુનું પદ $q$ એ સપાટીઓ વડે ઘેરાતા વિદ્યુતભારોનું પરિણામી વિદ્યુતભાર છે. આ વિદ્યુતભારો સપાટીમાં ગમે તે સ્થાને હોઈ શકે છે પણ સપાટીની બહાર આવેલા વિદ્યુતભારોને ગણાતરીમાં લેવાના નથી.
એક પોલા વિધુતભારિત સુવાહકની સપાટી પર એક નાનું છિદ્ર કાપેલ છે. દર્શાવો કે તે છિદ્રમાં વિધુતક્ષેત્ર $\left( {\sigma /2{\varepsilon _0}} \right)\hat n$ છે. જ્યાં, ${\hat n}$ બહાર તરફની લંબ દિશામનો એકમ સદિશ છે. અને $\sigma $ છિદ્રની નજીક વિધુતભારની પૃષ્ઠઘનતા છે.
$R-$ત્રિજ્યાનો ધાતુનો એક પોલો ગોળો નિયમીત રીતે વિજભારિત છે. કેન્દ્રથી $r$ અંતરે આ ગોળાને લીધે વિદ્યુત ક્ષેત્ર કેટલું હશે?
$ + \lambda \,C/m$ અને $ - \lambda \,C/m$ના બે સમાંતર અનંત રેખીય વિધુતભારો કે જે રેખીય વિજભાર ઘનતા ધરાવે છે તેઓને મુક્ત અવકાશમાં એક બીજાથી $2R$ અંતરે મુકેલ છે. આ બે રેખીય વિજભારની મધ્યમાં વિદ્યુતક્ષેત્ર કેટલું હશે ?
કુલંબના નિયમ પરથી ગાઉસનો પ્રમેય સમજાવો.
$R$ ત્રિજયાના ગોળા પર $2Q$ જેટલો કુલ વિદ્યુતભાર છે જેની વિદ્યુતભાર ઘનતા $\rho(r) = kr$ જ્યાં $r$ એ કેન્દ્રથી અંતર છે. બે વિદ્યુતભાર $A$અને $B$ જેનો વિદ્યુતભાર $-Q$ છે તેને ગોળાના વ્યાસ પર કેન્દ્ર થી સમાન અંતર પર છે. જો $A$ અને $B$ પર કોઈ બળ લાગતું ના હોય તો.....