એક પોલા વિધુતભારિત સુવાહકની સપાટી પર એક નાનું છિદ્ર કાપેલ છે. દર્શાવો કે તે છિદ્રમાં વિધુતક્ષેત્ર $\left( {\sigma /2{\varepsilon _0}} \right)\hat n$ છે. જ્યાં, ${\hat n}$ બહાર તરફની લંબ દિશામનો એકમ સદિશ છે. અને $\sigma $ છિદ્રની નજીક વિધુતભારની પૃષ્ઠઘનતા છે.
Let us consider a conductor with a cavity or a hole. Electric field inside the cavity is zero. Let $E$ is the electric field just outside the conductor, $q$ is the electric charge, $\sigma$ is the charge density and $\epsilon_{0}$ is the permittivity of free space. Charge $q=\sigma \times d s$
According to Gauss's law, flux, $\phi=E . d s=\frac{q}{\epsilon_{0}}$
$\Rightarrow E \cdot d s=\frac{\sigma \times d s}{\epsilon_{0}}$
$\therefore E =\frac{\sigma}{2 \epsilon_{0}} \hat{n}$
Therefore, the electric field just outside the conductor is $\frac{\sigma}{2 \epsilon_{0}} \hat{n} .$ This field is a superposition of field due to the cavity $E '$ and the field due to the rest of the charged conductor $E'$. These fields are equal and opposite inside the conductor and equal in magnitude and direction outside the conductor. $\therefore E '+ E '= E$
$\Rightarrow E'=\frac{ E }{2}=\frac{\sigma}{2 \epsilon_{0}} \hat{n}$
Hence, the field due to the rest of the conductor is $\frac{\sigma}{\epsilon_{0}} \hat{n}$
$R$ ત્રિજ્યા ધરાવતો અનંત ધન નળાકારમાં અચળ વિજભાર કદ ઘનતા $\rho$ છે. તેના અંદર $R/2$ ત્રિજ્યા ધરાવતી ગોળીય બખોલ છે. જેનું કેન્દ્ર અક્ષ પર છે. નળાકારની અક્ષથી $2R$ અંતરે આવેલ $P$ બિંદુએ વિદ્યુતક્ષેત્ર $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ હોય તો $K$ નું મૂલ્ય કેટલું હશે?
સમાન અને વિરૂદ્ધ વિદ્યુતભારની ઘનતા $\sigma$ વાળી બે અને સમાંતર તકતીઓ એકબીજાથી અંતરે આવેલી છે. તકતીઓના વચ્ચે આવેલ બિંદુ આગળ વિદ્યુતક્ષેત્ર ......... છે.
$10 \,cm$ ત્રિજ્યાના એકરૂપ વિદ્યુતભારીત અવાહક ગોળાના કેન્દ્રથી $20 \,cm$ અંતરે વિદ્યુતક્ષેત્ર $E$ છે. તો $5 \,cm$ અંતરે કેટલું હશે ?
$\mathrm{R}$ ત્રિજ્યાના ગોળાનો વિચાર કરો કે જેના પર વિધુતભાર ઘનતાનું વિતરણ $p\left( r \right){\rm{ }} = {\rm{ }}kr,{\rm{ }}r \le R{\rm{ }} = {\rm{ }}0$ અને $r\, >\, R$.
$(a)$ $\mathrm{r}$ જેવાં અંતરે આવેલાં બધા બિંદુઓએ વિધુતક્ષેત્ર શોધો.
$(b)$ ધારોકે, ગોળા પરનો કુલ વિધુતભાર $2\mathrm{e}$ છે જ્યાં $\mathrm{e}$ એ ઇલેક્ટ્રોન પરનો વિધુતભાર છે. બે પ્રોટોન્સને કયાં જડિત કરી ( મૂકી ) શકાય કે જેથી તેમની દરેક પર લાગતું બળ શૂન્ય છે. એવું ધારી લો કે, પ્રોટોનને દાખલ કરવાથી ઋણ વિધુતભાર વિતરણમાં કોઈ ફેરફાર થતો નથી.
પરમાણુનું પરિમાણ એંગસ્ટ્રોમના ક્રમનું છે. તેથી તેમાં ઇલેક્ટ્રોન્સ અને પ્રોટોન્સ વચ્ચે ખૂબજ મોટું વિધુતક્ષેત્ર હોવું જોઈએ, તો પછી શા માટે ધાતુની અંદર સ્થિત વિધુતક્ષેત્ર શૂન્ય છે ?