If the total charge enclosed by a surface is zero, does it imply that the electric field everywhere on the surface is zero ? Conversely, if the electric field everywhere on a surface is zero, does it imply that net charge inside is zero.
Electric flux $\phi=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{q}{\epsilon_{0}}$
In left side of equation, $\overrightarrow{\mathrm{E}}$ is electric field on the surface by charges inside and outside the surface. But, in right side of equation, $q$ is the charge enclosed by the surface.
It means, if $q=0$, then may $\mathrm{E} \neq 0$ because there may be $\mathrm{E}$ due to charges outside the surface. But, if $\mathrm{E}=0$, then $q=0$.(Charge enclosed by surface)
Two fixed, identical conducting plates $(\alpha $ and $\beta )$, each of surface area $S$ are charged to $-\mathrm{Q}$ and $\mathrm{q}$, respectively, where $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ A third identical plate $(\gamma )$, free to move is located on the other side of the plate with charge $q$ at a distance $d$ as per figure. The third plate is released and collides with the plate $\beta $. Assume the collision is elastic and the time of collision is sufficient to redistribute charge amongst $\beta $ and $\gamma $.
$(a)$ Find the electric field acting on the plate $\gamma $ before collision.
$(b)$ Find the charges on $\beta $ and $\gamma $ after the collision.
$(c)$ Find the velocity of the plate $\gamma $ after the collision and at a distance $d$ from the plate $\beta $.
A spherical portion has been removed from a solid sphere having a charge distributed uniformly in its volume as shown in the figure. The electric field inside the emptied space is
A conducting sphere of radius $10 \;cm$ has an unknown charge. If the electric field $20\; cm$ from the centre of the sphere is $1.5 \times 10^{3} \;N / C$ and points radially inward, what is the net charge (in $n\;C$) on the sphere?
An isolated sphere of radius $R$ contains uniform volume distribution of positive charge. Which of the curve shown below, correctly illustrates the dependence of the magnitude of the electric field of the sphere as a function of the distance $r$ from its centre?
Let $\rho (r) =\frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point '$p$' inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is