$R-$ત્રિજ્યાનો ધાતુનો એક પોલો ગોળો નિયમીત રીતે વિજભારિત છે. કેન્દ્રથી $r$ અંતરે આ ગોળાને લીધે વિદ્યુત ક્ષેત્ર કેટલું હશે?
$ r < R$ અને $r > R$ માટે જેમ $r$ વધે છે તેમ વધે છે
$r < R$ માટે જેમ $r$ વધે છે તેમ શૂન્ય છે, $r >R$ માટે જેમ $r$ વધે છે તેમ ઘટે છે
$r < R$ માટે જેમ વધે છે તેમ શૂન્ય છે, $r > R$ માટે જેમ $r$ વધે છે તેમ તે વધે છે
$r < R$ અને $r >R$ માટે જેમા $r$ વધે છે તેમ ઘટે છે
અનંત લંબાઈના અને વિધુતભારની રેખીય ઘનતા વાળા સુરેખ તારથી ઉદ્ભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો.
$R$ ત્રિજ્યા ધરાવતા વાહક ગોળામાં વિધુતભાર સમાન રીતે વિતરિત કરેલ છે તો કેન્દ્ર $x$ અંતર ($x < R$) માટે વિધુતક્ષેત્ર કોના સમપ્રમાણમાં હોય ?
બે મોટી, પાતળી ધાતુની પ્લેટો એકબીજાની નજીક અને સમાંતર છે. તેમની અંદરની બાજુઓ પર વિરૂદ્ધ ચિહ્નો ધરાવતી અને $17.0\times 10^{-22}\; C/m^2$ મૂલ્યની વિદ્યુતભારની પૃષ્ઠઘનતા છે. $(a)$ પ્રથમ પ્લેટની બહારના વિસ્તારમાં $(b)$ બીજી પ્લેટની બહારના વિસ્તારમાં અને $(c)$ બંને પ્લેટોની વચ્ચેના વિસ્તારમાં વિદ્યુતક્ષેત્ર $E$ શોધો.
$R$ ત્રિજયાના ગોળાના કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?
$12 \,cm$ ત્રિજ્યાના એક ગોળાકાર સુવાહકની સપાટી પર $1.6 \times 10^{-7} \;C$ વિદ્યુતભાર નિયમિત રીતે વિતરિત થયેલો છે.
$(a)$ ગોળાની અંદર
$(b)$ ગોળાની તરત બહાર
$(c)$ ગોળાના કેન્દ્રથી $18 \,cm$ અંતરે આવેલા બિંદુએ - વિદ્યુતક્ષેત્ર કેટલું છે?