If the three lines $x - 3y = p, ax + 2y = q$ and $ax + y = r$ form a right-angled triangle then

  • [JEE MAIN 2013]
  • A

    $a^2 -9a + 18 =0$

  • B

    $a^2 -6a-12=0$

  • C

    $a^2 -6a- 18=0$

  • D

    $a^2 -9a+ 12 =0$

Similar Questions

Three lines $x + 2y + 3 = 0 ; x + 2y - 7 = 0$ and $2x - y - 4 = 0$ form the three sides of two squares. The equation to the fourth side of each square is

Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4$, $A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

  • [IIT 2009]

The pair of straight lines $x^2 - 4xy + y^2 = 0$ together with the line $x + y + 4 = 0$ form a triangle which is :

Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x - 2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line

  • [JEE MAIN 2014]

Let $PQR$ be a right angled isosceles triangle, right angled at $P\, (2, 1)$. If the equation of the line $QR$ is $2x + y = 3$, then the equation representing the pair of lines $PQ$ and $PR$ is