The pair of straight lines $x^2 - 4xy + y^2 = 0$ together with the line $x + y + 4 = 0$ form a triangle which is :
right angled but not isosceles
right isosceles
scalene
equilateral
The locus of the mid-points of the perpendiculars drawn from points on the line, $\mathrm{x}=2 \mathrm{y}$ to the line $\mathrm{x}=\mathrm{y}$ is
Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x - 2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line
The base of an equilateral triangle is along the line given by $3x + 4y\,= 9$. If a vertex of the triangle is $(1, 2)$, then the length of a side of the triangle is
The vertex of a right angle of a right angled triangle lies on the straight line $2x + y - 10 = 0$ and the two other vertices, at points $(2, -3)$ and $(4, 1)$ then the area of triangle in sq. units is
The sides of a rhombus $ABCD$ are parallel to the lines, $x - y + 2\, = 0$ and $7x - y + 3\, = 0$. If the diagonals of the rhombus intersect at $P( 1, 2)$ and the vertex $A$ ( different from the origin) is on the $y$ axis, then the ordinate of $A$ is