Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4$, $A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

  • [IIT 2009]
  • A

    $2$

  • B

    $9$

  • C

    $4$

  • D

    $5$

Similar Questions

The opposite angular points of a square are $(3,\;4)$ and $(1,\; - \;1)$. Then the co-ordinates of other two points are

A vertex of equilateral triangle is $(2, 3)$ and equation of opposite side is $x + y = 2,$ then the equation of one side from rest two, is

  • [IIT 1975]

Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides $x + y =11, x +2 y =16$ and $2 x +3 y =29$. Then the product of the smallest and the largest values of $\alpha$ is equal to :

  • [JEE MAIN 2025]

Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x -2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line

$A(-1, 1)$, $B(5, 3)$ are opposite vertices of a square in $xy$-plane. The equation of the other diagonal (not passing through $(A, B)$ of the square is given by