A circle with centre $'P'$ is tangent to negative $x$ & $y$ axis and externally tangent to a circle with centre $(-6,0)$ and radius $2$ . What is the sum of all possible radii of the circle with centre $P$ ?
$4$
$16$
$32$
$64$
If the tangent at the point $P$ on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the $y$- axis, then the length of $PQ$ is
Tangents are drawn from the point $(-1,-4)$ to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$. Length of corresponding chord of contact will be-
Let $O$ be the centre of the circle $x ^2+ y ^2= r ^2$, where $r >\frac{\sqrt{5}}{2}$. Suppose $P Q$ is a chord of this circle and the equation of the line passing through $P$ and $Q$ is $2 x+4 y=5$. If the centre of the circumcircle of the triangle $O P Q$ lies on the line $x+2 y=4$, then the value of $r$ is. . . .
The normal at the point $(3, 4)$ on a circle cuts the circle at the point $(-1, -2)$. Then the equation of the circle is
Square of the length of the tangent drawn from the point $(\alpha ,\beta )$ to the circle $a{x^2} + a{y^2} = {r^2}$ is