यदि रैखिक समीकरण निकाय
$2 x+y-z=3$
$x-y-z=\alpha$
$3 x+3 y+\beta z=3$ के अनंत हल है, तो $\alpha+\beta-\alpha \beta$ बराबर है ............. |
$1$
$2$
$3$
$5$
निकाय ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ व $3{x_1} + {x_2} + {x_3} = - 18$ के हलों की संख्या होगी
यदि शीर्ष $(2,-6),(5,4)$ और $(k, 4)$ वाले त्रिभुज का क्षेत्रफल $35$ वर्ग इकाई हो तो $k$ का मान है:
माना $\alpha$ के सभी वास्तविक मानों, जिनके लिए रेखाएँ $2 x-y+3=0,6 x+3 y+1=0$ तथा $\alpha x+2 y-2=0$ एक त्रिभुज नहीं बनाती है, के वर्गों का योग $\mathrm{p}$ है, तो महत्तम पूर्णांक $\leq \mathrm{p}$ है .......।
$\left| {\,\begin{array}{*{20}{c}}{11}&{12}&{13}\\{12}&{13}&{14}\\{13}&{14}&{15}\end{array}\,} \right| = $
निम्नलिखित में दिए गए शीर्ष बिंदुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।:$(-2,-3),(3,2),(-1,-8)$