Find values of $x$, if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$

$\Rightarrow 2 \times 1-5 \times 4=2 x \times x-6 \times 4$

$\Rightarrow 2-20=2 x^{2}-24$

$\Rightarrow 2 x^{2}=6$

$\Rightarrow x^{2}=3$

$\Rightarrow x=\pm \sqrt{3}$

Similar Questions

If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and  $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to

  • [JEE MAIN 2019]

If $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (where $x, y, z $ are not all zero) have a solution other than $x = 0$, $y = 0$, $z = 0$ then $a, b$  and $ c $ are connected by the relation

  • [IIT 1978]

If $px^4 + qx^3 + rx^2 + sx + t$ $\equiv$ $\left| {\begin{array}{*{20}{c}}{{x^2}\, + \,\,3x}&{x\, - \,1}&{x\, + \,3}\\{x\, + \,1}&{2\, - \,x}&{x\, - \,3}\\{x\, - \,3}&{x\, + \,4}&{3x}\end{array}} \right|$ then $t =$

Evaluate the determinant $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$

If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes  $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to

  • [JEE MAIN 2020]