જો રેખાઓની સંહતિ $x+ ay+z\,= 3$ ; $x + 2y+ 2z\, = 6$ ; $x+5y+ 3z\, = b$ ને એકપણ ઉકેલ શકય ન હોય તો . . .
$a\, = 1$ , $b\,\ne 9$
$a\,\ne - 1$ , $b\, = 9$
$a\, = - 1$ , $b = 9$
$a\, = -1$ , $b\,\ne 9$
જો રેખીય સમીકરણો $2x + 2y + 3z = a$ ; $3x - y + 5z = b$ ; $x - 3y + 2z = c$ કે જ્યાં $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યા છે તો સમીકરણોને એક કરતાં ઉકેલ માટે . . ..
જો $k_1$, $k_2$ એ $k$ ની મહતમ અને ન્યૂનતમ કિમતો છે કે જેથી સમીકરણોની સહંતિ $x + ky = 1$ ; $kx + y = 2$; $x + y = k$ એ સુસંગત થાય છે તો $k_1^2 + k_2^2$ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{11}&{12}&{13}\\{12}&{13}&{14}\\{13}&{14}&{15}\end{array}\,} \right| = $
$\theta \in (0,\pi)$ ની કેટલી કિમંત માટે રેખીય સમીકરણો $x + 3y + 7z = 0$ ; $-x + 4y + 7z = 0$ ; $ (sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ ને શૂન્યતર ઉકેલ ધરાવે .
સુરેખ સમીકરણ સંહતિ $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?