જો રેખીય સમીકરણો $2x + 2y + 3z = a$ ; $3x - y + 5z = b$ ; $x - 3y + 2z = c$ કે જ્યાં $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યા છે તો સમીકરણોને એક કરતાં ઉકેલ માટે . . ..
$b \,-\, c \,+\, a = 0$
$b\, -\, c\, -\,a = 0$
$a \,+\, b\, +\, c = 0$
$b \,+ \,c\, -\,a = 0$
જો સુરેખ રેખાઓની સહંતિ $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ ને અનંત ઉકેલ હોય તો $12 \alpha+13 \beta$ ની કિમંત મેળવો.
નિશ્ચાયકનો ઉપયોગ કરી $(3, 1)$ અને $(9, 3)$ ને જોડતી રેખાનું સમીકરણ શોધો.
જો $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ અને $A$ અને $B$ એ અનુક્રમે $f(\theta )$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો $(A , B)$ મેળવો.
જો $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યાઓ છે અને જો સમીકરણો $(a - 1 )x = y + z,$ $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ ને શૂન્યતર ઉકેલ હોય તો $ab + bc + ca$ ની કિમત મેળવો.
ધારો કે $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ અને $|2 A|^3=2^{21}$ છે જ્યાં $\alpha, \beta \in Z$,તો $\alpha $ ની એક કિંમત ______________ છે.