If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then

  • [JEE MAIN 2019]
  • A

    $g+h+k=0$

  • B

    $2g+h+k=0$

  • C

    $g+h+2k=0$

  • D

    $g+2h+k=0$

Similar Questions

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

Let $a, b, c > 0$ and $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ then which of the following is not correct?

Two fair dice are thrown. The numbers on them are taken as $\lambda$ and $\mu$, and a system of linear equations

$x+y+z=5$    ;    $x+2 y+3 z=\mu$   ;     $x+3 y+\lambda z=1$

is constructed. If $\mathrm{p}$ is the probability that the system has a unique solution and $\mathrm{q}$ is the probability that the system has no solution, then :

  • [JEE MAIN 2021]

If $\left| {\begin{array}{*{20}{c}}
  {^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\ 
  {^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\ 
  {^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}} 
\end{array}} \right| = 0$ then $r$ is equal to 

The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $