If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

  • A

    $1$

  • B

    $4$

  • C

    $16$

  • D

    $0$

Similar Questions

If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in

Let $N$ denote the number that turns up when a fair die is rolled. If the probability that the system of equations

$x+y+z=1$  ;  $2 x+N y+2 z=2$  ;  $3 x+3 y+N z=3$

has unique solution is $\frac{k}{6}$, then the sum of value of $k$ and all possible values of $N$ is

  • [JEE MAIN 2023]

Let $\alpha, \beta$ and $\gamma$ be real numbers such that the system of linear equations

$x+2 y+3 z=\alpha$

$4 x+5 y+6 z=\beta$

$7 x+8 y+9 z=\gamma-$

is consistent. Let $| M |$ represent the determinant of the matrix

$M=\left[\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$

Let $P$ be the plane containing all those $(\alpha, \beta, \gamma)$ for which the above system of linear equations is consistent, and $D$ be the square of the distance of the point $(0,1,0)$ from the plane $P$.

($1$) The value of $| M |$ is

($2$) The value of $D$ is

  • [IIT 2021]

If the system of linear equations  $2 x + y - z =7$ ; $x-3 y+2 z=1$  ; $x +4 y +\delta z = k$, where $\delta, k \in R$  has infinitely many solutions, then $\delta+ k$ is equal to

  • [JEE MAIN 2022]

Let $P $ and $Q $ be $3×3$ matrices $P \ne Q$. If ${P^3} = {Q^3},{P^2}Q = {Q^2}P$ then determinant of $\det \left( {{P^2} + {Q^2}} \right)$ is equal to :

  • [AIEEE 2012]