The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
$2$
$4$
$0$
$1$
The number of real values $\lambda$, such that the system of linear equations $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ has no solution, is :-
If for some $\alpha$ and $\beta$ in $R,$ the intersection of the following three planes $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ is a line in $\mathrm{R}^{3},$ then $\alpha+\beta$ is equal to
If $a, b, c$ are sides of a scalene triangle, then the value of $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ is
If the following system of linear equations
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$
has no solution, then :
Let $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, then